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Human activity recognition requires the efforts to build a generalizable model using the training datasets

with the hope to achieve good performance in test datasets. However, in real applications, the training and

testing datasets may have totally different distributions due to various reasons such as different body shapes,

acting styles, and habits, damaging the model’s generalization performance. While such a distribution gap

can be reduced by existing domain adaptation approaches, they typically assume that the test data can

be accessed in the training stage, which is not realistic. In this paper, we consider a more practical and

challenging scenario: domain-generalized activity recognition (DGAR) where the test dataset cannot be
accessed during training. To this end, we propose Adaptive Feature Fusion for Activity Recognition (AFFAR), a
domain generalization approach that learns to fuse the domain-invariant and domain-specific representations

to improve the model’s generalization performance. AFFAR takes the best of both worlds where domain-

invariant representations enhance the transferability across domains and domain-specific representations

leverage the model discrimination power from each domain. Extensive experiments on three public HAR

datasets show its effectiveness. Furthermore, we apply AFFAR to a real application, i.e., the diagnosis of

Children’s Attention Deficit Hyperactivity Disorder (ADHD), which also demonstrates the superiority of our

approach.
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1 INTRODUCTION
Human activity recognition (HAR) is an active research topic in ubiquitous computing. HAR aims

at recognizing people’s activities by building machine learning models on the activity data. HAR

has been wildly applied in smart-home [15], fatigue detection [47], fall detection for the elder [32],

attention deficit hyperactivity disorder (ADHD) [11], and other fields. Therefore, accurate HAR is

of vital importance in real-world applications. Many machine learning methods have been adopted

to improve the performance of HAR, such as Support Vector Machines (SVM), K-Nearest Neighbor

(KNN), Random Forest (RF), and the deep learning models including Convolutional Neural Networks

(CNN) [25], Long-short Term Memory (LSTM) [21] and others [53].

Despite the great success in the past, one critical challenge is the generalization ability of the

HAR models, i.e., the performance of applying the trained models to a new, unseen dataset. In

real applications, the sensor signals are easily influenced by the diverse personalities of end-users

such as acting styles, habits, or different body shapes. When testing on a new end-user whose

activity data are never seen in the training set, the performance of the model is likely to drop. For

instance, Figure 1 shows the sensor readings of two users from DSADS dataset [3] collected using

the same device, where the distributions of sensor readings are different, i.e., 𝑃 (D1) ≠ 𝑃 (D2).
When deployed to an unseen test user D𝑡𝑒

whose distribution is different from the training set, the

performance of the activity recognition model will be likely to drop. This is due to the domain shift

caused by the non-IID (independently and identically distributed) distributions between training

and testing datasets [48].

Train on users 𝒟1 and 𝒟2 Test on user 𝒟𝑡𝑒

1. 𝑃(𝒟1) ≠ 𝑃 𝒟2 ≠ 𝑃(𝒟𝑡𝑒)

2. 𝒟𝑡𝑒 is unseen in training.

Problem setting

Test

acc.

𝒟1 𝒟2 𝒟𝑡𝑒

Fig. 1. The distributions of accelerometer readings vary among different users. When the test dataset has
different distributions and cannot be accessed during training, the performance of existing methods will drop
while our method can reach better performance.

Such a domain shift issue can be mitigated by transfer learning and domain adaptation tech-

niques [10, 36], which have been applied to HAR over the years. Transfer learning first pre-trains

a model from the source dataset and then fine-tunes it on the new test data. Domain adapta-

tion performs instance reweighting or feature transformation between the training and testing

datasets to learn domain-invariant representations where their distribution gap can be mini-

mized [7, 10, 27, 39, 43, 54]. Unfortunately, both transfer learning and domain adaptation require

access to target domain training data, which is often not realistic in real applications as we aim to

achieve “Train once, deploy everywhere”. In real applications, it is hard to obtain the test data [55].

For example, it is impractical to collect each patient’s data for medical healthcare, and to collect

data on a variety of fall poses for fall detection in advance.
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Domain generalization (DG) [55] is an emerging research topic in recent years. DG focuses

on utilizing the knowledge from several different domains to build a model that can generalize

well to unknown domains. Many works have been done and make a good performance in the

computer vision field. Unfortunately, we cannot directly apply existing DG methods to our problem

due to the characteristics of wearable-sensor-based activity data. To the best of our knowledge,

few existing works focus on the domain generalization problems in HAR and we refer to this as

domain-generalized HAR (DGAR).

In this paper, we propose Adaptive Feature Fusion for Activity Recognition (AFFAR) to
improve the generalization ability of HAR models (refer to Figure 2). The key of AFFAR is to

learn both domain-specific representation and domain-invariant representation and fuse them

dynamically in a unified deep neural network. Specifically, domain-invariant representation learning

is to capture the general and transferable knowledge from the training domains, and domain-

specific representation learning is to learn the specific characteristics of each domain to preserve

the diversity of features to improve generalization ability. Our key assumption is that although

we cannot get access to the test data and the sensor readings from different persons are different,

they still share some similarities that can be utilized to learn domain-invariant representations.

Therefore, we can learn transferable knowledge while preserving their diversities for generalization.

Our method can be optimized in an end-to-end neural network. We show the superiority of AFFAR

by experimenting on both public HAR datasets and a real application to the diagnosis of attention

deficit hyperactivity disorder (ADHD). Experiments demonstrate that our method significantly

outperforms the comparison methods.

The main contributions of this paper are four-fold:

(1) We propose and study a more practical and challenging problem scenario: domain-generalized

activity recognition (DGAR), for robust and generalized activity recognition. We thoroughly

analyze the reason for this problem, indicating a new research direction.

(2) To solve the DGAR problem, we propose a novel algorithm: Adaptive Feature Fusion for

Activity Recognition (AFFAR), to learn both domain-invariant and domain-specific deep

representations to enhance the generalization capability of the model to unseen datasets.

(3) We evaluate AFFAR on three public HAR datasets. Experiments on cross-person activity recog-

nition demonstrate that the proposed AFFAR can significantly outperform the comparison

methods.

(4) Finally, we apply our AFFAR algorithm to a real-world ADHD problem where it also achieves

the best performance.

2 RELATEDWORK
2.1 Human Activity Recognition
Human activity recognition (HAR) [40] aims at recognizing the activities of people by training

machine learning models on the data collected during performing some specific activities. In

HAR, the wearable sensor-based human activity recognition has occupied an important position

as it is superior in pervasiveness, computational consumption, and privacy preservation with

wearable sensors as interface [9]. So in this paper, we mainly focus on wearable sensor-based

activity recognition. Over these years, many efforts have been done to achieve accurate and robust

activity recognition including traditional machine learning methods[28] combined with feature

extraction, and deep learning methods [8, 53]. However, the conventional methods usually focus

on the i.i.d. data situation, i.e. the training data set and testing data set follow the same distribution,

this may result in performance degradation when faced with various tasks in real-life applications.
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2.2 Transfer Learning and Domain Adaptation
In sensor-based HAR, domain shift is a common and must be solved problem due to the variation of

devices, locations, personalities, and so on. During the data collection, any change in these factors

may result in distribution divergence. Large distribution divergence results in the performance

degradation of the trained model. Transfer learning, as a representative method of machine learning,

is an effective paradigm to solve the domain shift problems, which makes it possible to reuse existing

knowledge. The purpose of transfer learning is to apply the knowledge learned in the existing

domains to related but different accessible domains during the training process, to improve the

ability to solve new tasks [36, 57].

The commonly used approach of transfer learning is pre-training and fine-tuning, i.e., pre-

training on the source dataset to get a pre-trained model, and then fine-tuning this model on

the new target dataset. Such a simple and effective approach has been successfully applied to

computer vision [46, 60], natural language processing [12], and speech recognition [24, 49]. In

order to tackle the domain shift challenge, transfer learning has become an effective method and

applied in HAR [7, 10, 27, 39, 43]. Ma M et.al [33] proposed a twin stream network architecture

and jointly fine-tuned the two networks to recognize objects, actions, and activities. Wang H B

et.al [52] verified that fine-tuning and regular constraints can increase the training efficiency, and

fine-tuning is valid in practical HAR applications.

In the scope of transfer learning, domain adaptation (DA) is a major technique and has attracted

much attention from researchers in recent years. Domain adaptation aims at improving the per-

formance on the given less annotated or no annotated target domain by exploiting the source

domains. Domain adaptation is a popular topic and has been applied in HAR to solve the domain

shift problem [7]. Khan et al. [27] proposed a feature-based model HDCNN, which adapts the

source and target features after every convolutional and fully connected layer. Chang et al. [7]

made a comparison of adaptation techniques to give a guideline on applying unsupervised domain

adaptation algorithms to cross-position HAR problems.

However, both transfer learning and domain adaptation assume the target domain can be

accessed in the model training process. While in real HAR applications, the target tasks are novel

and various and can not be accessed during the training. This requires the trained model has strong

generalization capability so that it can perform well in unknown fields, which goes beyond the

scope of conventional transfer learning and domain adaptation problem settings. Specifically, the

multi-source domain adaptation (MSDA) also has several source domains for training, but its goal

is to adapt the trained model to the target domain, which is accessible during training.

2.3 Domain Generalization
Domain generalization (DG) is an emerging topic and is attracting increasing attention in recent

years. The goal of DG is to learn a robust and well-generalized prediction function on several given

source domains to obtain the minimum prediction error on any possible unknown domain [55].

The most striking difference between DA and DG is that whether the target domain can be

accessed during the training, the target data can only be used for the model test in DG. Thus,

DG is more suitable for the situation of various unknown target HAR tasks in real life. DG has

been widely applied in the computer vision field and many DG methods have been proposed and

evaluated on image datasets. The DG methods can be mainly divided into three branches, i.e. data

manipulation [38, 45], which works on the input data to assist the general representation learning;

representation learning [17, 18, 30], which aims at learning domain-invariant representation or

disentangling the features; and learning strategy [5, 23, 29, 42], which exploits the general learning

strategy such as meta-learning and ensemble learning for generalization. Yan et al. [58] solved the
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DG problem from the perspective of data generation by linear interpolation between instances and

their labels. However, unlike image data, it is hard to intuitively assess the semantics and diversity

of sensor data. Although some works assess sensor data by training a post-hoc classification or

prediction model or using other techniques, these assessments are still less intuitive and explainable

to some extent [31, 59]. Data generation methods may be not straightly applicable to sensor-based

HAR since there is still a lack of the intuitive quantitative assessment of quality for generated sensor

data. Li et al. [29] proposed a model agnostic training procedure by leveraging the meta-learning for

DG, i.e. MLDG, while this kind of method may not straightly applicable due to the high dependence

of sensor data. Many methods follow distribution alignment in DA to minimize the distribution

discrepancy between domains by adversarial training [19], Wasserstein distance [62] etc. to learn

domain-invariant representations, and the spirit is followed in DG. In the other aspect, some

ensemble-learning-based methods focus on the domain-specific, such as domain-specific neural

networks [34, 56], domain-specific batch normalization [44], weight averaging [6] etc., more details

can be found in [55]. However, few works both consider domain-invariant and domain-specific

representations, especially for HAR applications.

Last, it is worth noting that domain generalization is not Leave-One-Out-Cross-Validation

(LOOCV) in traditional machine learning. For domain generalization, we sequentially leave one

domain for the final test to construct several domain generalization tasks, and these tasks are

independent of each other. LOOCV is mainly used for selecting models where all domains are used

for validation in turn and it also has an inaccessible test dataset for the final testing. Therefore,

LOOCV can be seen as a typical model selection method that can also be used in DG.

3 OUR METHOD: ADAPTIVE FEATURE FUSION
In this section, we present our Adaptive Feature Fusion method for activity recognition in detail.

3.1 Problem Definition: Domain-generalized Activity Recognition
In a typical human activity recognition (HAR) problem, we are given a training dataset D𝑡𝑟 =

{(x𝑖 , 𝑦𝑖 )}𝑛𝑖=1
, where x ∈ R𝑑 denotes its 𝑑-dimensional features and 𝑦 ∈ {1, 2, · · · ,𝐶} denotes its

corresponding activity categories, such as walking or running. 𝑛 denotes the total number of

samples. The goal is to build a machine learning model ℎ : x ↦→ 𝑦 such that it can accurately

recognize the activities in the training data, i.e., achieving the minimum training error:

ℎ∗ = arg min

ℎ

1

𝑛

𝑛∑︁
𝑖=1

ℓ (ℎ(x𝑖 ), 𝑦𝑖 ), (1)

where ℎ∗ denotes the optimal model and ℓ (·, ·) is the loss function such as cross-entropy loss.

However, achieving the minimum error on the training data D𝑡𝑟
does not necessarily guarantee

optimal performance when we apply the model to the unseen test data D𝑡𝑒
. For instance, a well-

trainedHARmodel can perform poorly when deployed to recognize different persons’ activities with

different body shapes or activity styles. Moreover, we can never collect all the possible training data

to build a generalized HAR model. While transfer learning and domain adaptation [10, 36, 39, 54]

are popular to perform cross-domain learning, they can not be used in our problem since they

require the availability of the test domain.

We aim to solve this practical and challenging problem,whichwe refer to asDomain-generalized
Activity Recognition, or DGAR. Here, “domain” is a general notion of “dataset”, i.e., a dataset

is a domain, or it can be split into several domains [55]. In DGAR, we assume there are several

training (source) domains available, i.e., there are 𝐾 different but related training domains D𝑡𝑟 ={
D1,D2, · · · ,D𝐾

}
available. D𝑘 =

{
(x𝑘𝑖 , 𝑦𝑘𝑖 )

}𝑛𝑘
𝑖=1

denotes the 𝑘𝑡ℎ training domain with 𝑛𝑘 samples.
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Our goal is to learn a generalized model ℎ on the 𝐾 training domains such that it can achieve

minimum error on the unseen test domain D𝑡𝑒 = {(x𝑖 , 𝑦𝑖 )}𝑛𝑡𝑒𝑖=1
. We often assume that all domains

share the same kinds of sensors and activities, i.e. the feature space and the label space are the same:

X𝑡𝑟 = X𝑡𝑒
and Y𝑡𝑟 = Y𝑡𝑒

. In real applications, different domains tend to have different probability
distributions, i.e. 𝑃𝑖 (x) ≠ 𝑃 𝑗 (x) ≠ 𝑃𝑡𝑒 (x), 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝐾 . Since the probability distribution of the

test dataset is different from the training domains, DGAR is a practical setting to evaluate the

generalization ability of activity recognition algorithms.

3.2 Motivation and Main Idea
Domain generalization (DG) [4, 55] is the general learning setting of DGAR. Over the past few years,

domain generalization has attracted the increasing attention of researchers, and a large number of

DG methods have been proposed [55]. Most of these methods are developed for general-purpose

learning and they are often evaluated on image classification tasks, with data augmentation [5],

domain-invariant representation learning [35], or meta-learning methods [29]. Intuitively, it is

natural to ask: can we directly apply these existing DG methods to our DGAR problem? The short
answer is yes but no. “Yes” means we can always do that, “no” means this ignores the characteristics

of activity recognition and we can do it better. The reasons are as follows.

First, to achieve strong generalization capability, some of them focus on manipulation of data

including data augmentation and data generation which are specific to the image domain [5].

However, such methods may not be straightly applicable to sensor-based HAR due to the lack of a

quantitative assessment of quality for generated sensor data. Second, some focus on representation

learning, which aims to learn a better feature representation for better generalization. However,

activity recognition is a special area where we should not only care about domain-invariant features

but also domain-specific features to capture the individually-specific features from each domain,

which can preserve the diversity of different persons. Third, although meta-learning-based DG

methods could be used for our problem, our empirical experiments (ref. Table 2) indicate that its

performance is even worse than the empirical risk minimization method. The reason may be the

second-order gradient optimization can have mode collapse for the special activity data. To sum

up, we need to develop special algorithms for this DGAR problem.

In this paper, we proposed a novel Adaptive Feature Fusion method for domain-generalized

Activity Recognition, abbreviated as AFFAR. Our key assumption is that although we cannot get

access to the test data in training, we can still learn to represent the test data using the aggregation

of existing training data. This is reasonable since different persons may generate different sensor

readings while performing the same activities, but they could share some similarities such as body

shapes and activity styles. Thus, we can learn to represent each data as the weighted aggregation of

existing training domains. Meanwhile, since the activity data from different domains have different

probability distributions, we also need to learn domain-invariant features to regularize the model

to facilitate knowledge transfer.

The core of AFFAR is to learn both domain-invariant and domain-specific feature representations.

Specifically, domain-invariant representation learning is to capture the general and transferable

knowledge from the training domains, and domain-specific representation learning is to learn the

specific characteristics of each source domain to enhance the generalization ability. We depict the

overall learning process of AFFAR in Figure 2.

AFFAR conceptually consists of four modules: feature extraction module (purple blocks), activity

classification module (blue blocks), domain-specific representation learning module (yellow blocks),

and domain-invariant learning module (green blocks). The feature extraction module is used to

extract features from the raw sensor data. In this paper, we leverage two convolutional neural

network (CNN) layers along with max-pooling operations to extract features. These layers are
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Input

𝑓𝑓1

𝑓𝑓2

𝑓𝑓𝐾𝐾
𝑓𝑓𝑑𝑑

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝒟𝒟𝑖𝑖 ,𝒟𝒟𝑗𝑗)

𝑓𝑓𝑐𝑐

Conv. Max 
pooling

Conv. Max 
pooling

…

𝑤𝑤

Walking
Running
Upstairs
Sitting

𝒟𝒟1

…

Domain 1

Domain 2

Domain 𝐾𝐾

…

ℒ𝑐𝑐𝑐𝑐𝑐𝑐

ℒ𝑑𝑑𝑖𝑖𝑑𝑑

ℒ𝑑𝑑𝑐𝑐𝑑𝑑

ℒ = ℒ𝑐𝑐𝑐𝑐𝑐𝑐 + 𝜆𝜆ℒ𝑑𝑑𝑐𝑐𝑑𝑑 + 𝛽𝛽ℒ𝑑𝑑𝑖𝑖𝑑𝑑

𝒟𝒟2

𝒟𝒟𝐾𝐾

�

Domain-specific feature
Activity classification Domain-invariant feature

Feature extractor

Fig. 2. Illustration of the AFFAR framework.

shared by all training domains to reduce parameter amounts. The domain-specific representation

learning module is used to learn domain-specific features, thus this is not shared, but specific for

each domain. We implement it by adding𝐾 fully connected (FC) layers for each domain after feature

extraction. To aggregate the specific information of each domain, we design a weighting function.

The domain-invariant representation learning module is used to reduce the distribution discrepancy

between each domain D𝑖
and domain D 𝑗

to learn domain-invariant features. Finally, the activity

classification module is an FC layer. Since the classification uses the fusion of domain-specific and

domain-invariant features, we call our method adaptive feature fusion.

The learning objective of AFFAR can be formulated as:

L = L𝑐𝑙𝑠 + 𝜆L𝑑𝑠𝑟 + 𝛽L𝑑𝑖𝑟 , (2)

where L𝑐𝑙𝑠 is the classification loss, L𝑑𝑠𝑟 is the loss of domain-specific representation learning, L𝑑𝑖𝑟
is the loss of domain-invariant representation learning. 𝜆 and 𝛽 are the tradeoff hyperparameters.

For classification, we take cross entropy as the classification loss:

L𝑐𝑙𝑠 = − 1

𝑁

𝑁∑︁
𝑖=1

𝑦𝑖 log 𝑃 (𝑦𝑖 | 𝑥𝑖 ) , (3)

where 𝑁 =
∑𝐾
𝑘=1

𝑛𝑘 is the amount of the samples from all the training domains.

In the next sections, we will elaborate on the details of domain-specific and domain-invariant

representation learning modules.

3.3 Domain-specific Representation Learning
The domain-specific representation learning module aims to learn domain-specific features and

then aggregate them for unified feature representations by fusing the features frommultiple sources

for the unseen target feature. More formally, given a new test data x, its feature z is formulated as:

z =
𝐾∑︁
𝑘=1

𝑤𝑘 𝑓𝑘 (𝑓𝑒 (x)), where𝑤𝑘 > 0 and

𝐾∑︁
𝑘=1

𝑤𝑘 = 1, (4)

where𝑤𝑘 is the weight on domain D𝑘
, indicating the similarity between the data on domain D𝑘

and the true data. 𝑓𝑘 is the feature learning function of domain D𝑘
and 𝑓𝑒 is the shared feature

extraction function, i.e., CNNs.

This process can be viewed as a certain type of ensemble learning [13], where each specific base

learner is trained to ensemble a stable model which can perform well in all aspects. In our problem,

the base learner is composed of two parts: the shared CNN feature extractor 𝑓𝑒 and the specific
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feature extraction layer 𝑓𝑘 for each domain D𝑘
. This split is motivated by existing research on the

transfer learning ability of deep networks [60] that the lower layers tend to learn low-level and

general features while the higher layers tend to learn domain-specific features.

To learn the weights 𝑤𝑘 for each domain D𝑘
, we build a domain classifier 𝑓𝑑 : x ↦→ R𝐾 that

takes as input the features after CNN layers, and then use softmax to satisfy Equation 4. At training

time, the domain label 𝑑𝑘 ≡ 𝑘 for each sample is known a priori, thus, the domain-specific loss for

each domain 𝑘 can be computed as:

L𝑘
𝑑𝑠𝑟

=
1

𝑛𝑘

𝑛𝑘∑︁
𝑖=1

ℓ (𝑓𝑑 (𝑓𝑒 (x𝑖 )), 𝑑𝑘 ). (5)

Then, we can get the total domain-specific loss by averaging the losses on all domains as

L𝑑𝑠𝑟 = 1

𝐾

∑𝐾
𝑘=1

L𝑘
𝑑𝑠𝑟

.

When testing on the target data, we cannot access the domain label of the unseen target data.

After the network extracts the features, the output of the domain weight branch is used as the

weight to fuse the target features extracted by each domain-specific branch. It can be understood

that the learned domain branch network adaptively fuses the domain-specific features extracted

from each source-specific branch to construct the feature representation of the target domain. In

this way, AFFAR can adaptively learn feature representation of any unseen domains.

3.4 Domain-Invariant Representation Learning
While domain-specific feature learning encourages the model to learn specific information for each

domain, the feature distribution gap could also be enlarged due to their diverse representations.

Thus, to enhance the generalization capability, we further design a domain-invariant representation

learning module to seek balance with domain-specific representation learning.

Recall that features in the lower level of deep neural networks focus on learning common and

low-level features, while the higher layers focus more on specific tasks [60]. Thus, we make feature

adaptation to reduce the distribution discrepancy between source domains in the domain-specific

layers. In the domain adaptation field, the strategy is to reduce the distribution discrepancy between

the source domain and the target domain so that the model can be robust on the target. Under

domain generalization scenarios, we cannot access the target domain data during the training

process, so it is of vital importance to learn domain-invariant feature representation so that any

unseen target can be represented. To enable feature adaptation in DGAR, we turn to reducing the

distribution divergence between each domain pairD𝑖
andD 𝑗

, i.e., to minimize 𝑑𝑖𝑠𝑡 (D𝑖 ,D 𝑗 ) where
𝑑𝑖𝑠𝑡 (·, ·) is a distribution distance measurement.

Specifically, we adopt the widely used distance metric Maximum Mean Discrepancy (MMD) [20]

to help reduce the distribution divergence. MMD embeds distributions in Reproducing Kernel

Hilbert Space (RKHS) and calculates the distance between these embeddings as the test statistic.

Thus, it is often adopted to justify whether two distributions are the same or used to measure how

similar two distributions are. The MMD loss between domains D𝑖
and D 𝑗

is formulated as:

L𝑖 𝑗

𝑑𝑖𝑟
=

 1

𝑛𝑖

∑︁
x∈D𝑖

𝜙 (x) − 1

𝑛 𝑗

∑︁
x∈D 𝑗

𝜙 (x)
2

H

, (6)

where 𝑖 and 𝑗 are indexes of domains, 𝜙 (·) is the feature map which maps the original instances

into the RKHSH . Then, the total loss for domain-invariant learning can be computed by taking

average on all possible domain pairs L𝑑𝑖𝑟 = 2

𝐾 (𝐾−1)
∑
𝑖, 𝑗 L

𝑖 𝑗

𝑑𝑖𝑟
.

Although we adopt MMD as a metric for distribution divergence in this paper, AFFAR is a general

approach that can embed other metrics instead of MMD.
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3.5 Training and Inference
As for training, after loading the training data, the feature extractor extracts the lower-level features

and then inputs them to each domain-specific branch. Each branch learns the higher-level domain-

specific representations. Meanwhile, the domain classifier takes the lower-level features as input

and outputs the softmax weights to fuse the domain-specific features. At the same time, it makes

the in-between-source domain adaptation to learn domain-invariant representation. Then, it takes

the fused features as input of the final activity classifier to make activity classification.

As for inference, we fix the model parameters and learn domain-specific and domain-invariant

representations for the target. Different from the training, without prior knowledge of the domain

label of target data, the output of the domain classifier can be regarded as the similarity between

the target and each source domain-specific branch.

The complete learning process of AFFAR is summarized in Algorithm 1.

Algorithm 1 AFFAR for domain-generalized activity recognition

Input: 𝐾 training domains D1

𝑠 , · · ·, D𝐾
𝑠 , and 𝜆, 𝛽 .

Output: Classification results on test domain.

1: Randomly initialize the model parameters 𝜃 ;

2: while not converge do
3: Sample a mini-batch B = {B1, · · · ,B𝐾 } from 𝐾 domains;

4: Extract the lower-level features 𝑓𝑒 (x) by the feature extractor;

5: Extract the domain-specific features 𝑓𝑘 (𝑓𝑒 (x)) by 𝐾 domain-specific FC layers;

6: Calculate the domain-specific loss L𝑑𝑠𝑟 and output the weight for each source branch;

7: Calculate the domain-invariant loss L𝑑𝑖𝑟 .
8: Fuse the domain-specific features with weight according to Eq. (4);

9: Calculate the total loss of AFFAR according to Eq. (2);

10: Update the model parameter 𝜃 using SGD.

11: end while
12: Make inference on the target HAR data.

13: return Classification results on target HAR data.

3.6 Discussions
The proposed AFFAR learns domain-specific and domain-invariant representations in a unified

framework to seek their balance in feature learning, which can take other distribution discrepancies

as the domain-invariant learning loss. We show two possible losses: the domain-adversarial neural

networks (DANN) [17] and the COReration ALignment (CORAL) loss [50]. DANN introduced an

adversarial training objective where it used a min-max optimization to maximize the loss of domain

discriminator and minimize the loss of both feature extractor and classification. However, DANN

only aims at learning domain-invariant representations, which is good for domain adaptation tasks

(that explains why DANN is the base model for modern domain adaptation models). DANN ignores

the specific features for each domain that is useful for domain generalization tasks, making it less

favorable for our DGAR problem. We will empirically show this argument in later experiments (ref.

Section 4.4.2). On the other hand, AFFAR is a general framework for DGAR tasks where we can

also employ the domain discriminator loss of DANN to replace MMD:

L𝑑𝑎𝑛𝑛
𝑑𝑖𝑟

= E1≤𝑖≠𝑗≤𝐾Ex𝑖 ∈D𝑖 ,x𝑗 ∈D 𝑗 log[𝐷 (𝑓𝑖 (𝑓𝑒 (x𝑖 )))] + log[1 − 𝐷 (𝑓𝑗 (𝑓𝑒 (x𝑗 )))], (7)
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where E denotes expectation operation and 𝐷 is a domain discriminator (typically a two-layer

feed-forward network). Thus, DANN for domain generalization requires to build
𝐾 (𝐾−1)

2
domain

discriminators, which is not efficient. We can also replace MMD with CORAL loss as:

L𝑐𝑜𝑟𝑎𝑙
𝑑𝑖𝑟

=
1

4𝑑2
| |𝐶𝑖 −𝐶 𝑗 | |2𝐹 , (8)

where 𝑑 denotes the feature dimension, 𝐶𝑖 ,𝐶 𝑗 denotes the covariance matrices for two domains,

and | | · | |𝐹 denotes the Frobenius norm. In later experiments (Section 4.4.2), we will show that our

AFFAR can also achieve competitive performance with these two losses.

3.7 Theoretical Insights
Finally, we show that our algorithm is theoretically-motivated using the theory proposed in [1].

Theorem 1 (Risk upper bound on unseen domain [1]). Let 𝛾 = 𝑑H (D𝑡𝑒 , ¯D𝑡𝑒 ) denote the
H -divergence between target domain and its nearest neighbor in source domain convex hull, then, the
risk on unseen domain D𝑡𝑒 of hypothesis ℎ is upper-bounded by the weighted risk on source set 𝑆 :

𝑅𝑡𝑒 [ℎ] ≤
𝑁𝑆∑︁
𝑖=1

𝜋𝑖𝑅
𝑖
𝑆 [ℎ] + 𝛾 + 𝜖 + min

{
E ¯D𝑡𝑒

[��𝑓𝑆𝜋 − 𝑓 𝑡𝑒
��] ,ED𝑡𝑒

[��𝑓 𝑡𝑒 − 𝑓𝑆𝜋 ��] } , (9)

where 𝜖 is the largest distribution divergence between unseen target domain and any source domain
and min

{
E ¯D𝑡𝑒

[��𝑓𝑆𝜋 − 𝑓 𝑡𝑒
��] ,ED𝑡𝑒

[��𝑓 𝑡𝑒 − 𝑓𝑆𝜋 ��] } denotes the difference between labeling functions.

In our problem, the categories between training and testing are the same, the main distribution

difference between training and testing data is the activity patterns (i.e., 𝑃 (x)). So it is close to

the covariate shift assumption: the labeling function error (min{·, ·}) and 𝛾 are both relatively

small [1]. In this way, the risk on unseen domain is bounded by two terms: the weighted source

risk

∑𝑁𝑆

𝑖=1
𝜋𝑖𝑅

𝑖
𝑆
[ℎ] and the source-target distribution divergence 𝜖 . Obviously, our domain-specific

learning module (Eq. (4)) corresponds to minimizing the weighted source risk and the domain-

invariant learning module (Eq. (6)) minimizes the risk 𝜖 . Thus, our algorithm can also be interpreted

from the theory. Additionally, we also provide a visualization study to help better analyze the

algorithm in Section 4.4.

4 EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of the proposed AFFAR approach via extensive

experiments on domain-generalized activity recognition.

4.1 Datasets and Preprocessing
We adopt three large public activity datasets as summarized in Table 1. In the following, we briefly

introduce their basic information, and detailed descriptions are in their original papers.

Table 1. Statistical information of three public activity recognition datasets

Dataset Subject Activity Sample Body Position Sampling rate Training : Test size

DSADS 8 19 1.14M 5 25Hz ∼15:1
USC-HAD 14 12 2.81M 1 ∼100Hz ∼16:1
PAMAP2 9 18 2.84M 3 100Hz ∼15:1
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DSADS. UCI Daily and Sports Data Set [3] collects 19 activities through 8 subjects (four males

and four females between the ages of 20 and 30) wearing body-worn sensor units including triaxial

accelerometer, triaxial gyroscope, and triaxial magnetometer on 5 body parts: torso, right arm, left

arm, right leg and left leg. To construct the domain-generalized activity recognition scenario, we

divide the 8 subjects into 4 groups where each group consists of 2 different subjects, and data from

each group is regarded as a domain, leading to 4 domains in total.

USC-HAD. USC Human Activity Dataset [61] consists of data collected from 14 subjects (7 males

and 7 females) performing 12 activities. A motion mode is equipped at the front right hip of subjects

to capture triaxial accelerometer and triaxial gyroscope sensor readings. In order to construct a

domain-generalized activity recognition scenario, we divide the 14 subjects into 5 groups where

each of the first four groups consists of 3 different subjects, and the last group consists of two

subjects. That leads to 5 domains in total.

PAMAP2. PAMAP2 [41] consists of data collected from 9 subjects performing 18 activities.

Each subject wears 3 inertial measurement units (IMU) and a heart rate monitor. We use the

data from IMU in the experiments. Each IMU consists of two 3-axis accelerometers, one 3-axis

magnetometer, and one 3-axis gyroscope. To construct a domain-generalized activity scenario,

we choose 8 subjects (subjects IDS 1-8) and their common eight activities: lying, sitting, standing,

walking, ascending stairs, descending stairs, vacuum cleaning, and ironing. Data are divided into 4

domains.

For each task in one dataset, we select one domain as the test domain while other domains serve

as the training domains. We further split a validation set from the training set with a ratio of 0.2

for hyperparameter tuning. Our main focus is to test the performance on cross-person settings in a

dataset (i.e., different person, same sensor device).

4.2 Comparison Methods and Implementation Details
We compare AFFAR with several state-of-the-art domain generalization methods:

• Empirical Risk Minimization (ERM [51], i.e., CNN baseline): minimizes the sum of errors over

data. We regard it as the naive baseline to learn a single model on all source domains.

• Meta-Learning Domain Generalization (MLDG [29]): learns how to generalize cross domains

by leveraging Model-Agnostic Meta Learning (MAML [16]).

• Domain Adversarial Neural Network (DANN [17]): employs an adversarial network that

consists of a generator and a discriminator to adapt feature distribution. Under the domain

generalization setting, we perform DANN across multiple source domains as no target can

be accessed during the training process.

• Group Distributionally Robust Optimization (GroupDRO [42]): couples group DRO models

with increased regularization to increase the importance of the worst-group loss.

• Representation Self-Challenging (RSC [23]): discards the dominant features i.e. representa-

tions associated with the higher gradients at each epoch, and forces the model to predict

with the remaining information.

• AND-mask [37]: learning explanations that are hard to vary, which uses AND-mask to

improve the consistency in gradients for better generalization.

In addition, we compare the results of all methods with the results trained on the target domain

(split the target data into train and test set with a rate around 8:2), which are ideal cases since our
problem does not access the target domain data:

• ERM-t: directly trains models on the target domain using ERM.

• Fine-tune: trains a model using ERM on the training set and then fine-tunes it on the target.
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Experimental settings are as follows. In order to evaluate the classification performance of AFFAR,

we construct non-iid cross-person HAR tasks under the domain generalization scenario. First, we

divide the data of subjects into several groups as illustrated in Section 4.1, data from each group

is regarded as a domain. Each domain plays the role of the unseen target domain and remains as

source domains. We use 2-D convolutions for our implementations with the kernel size of (1, 6)
and (1, 9), depending on different datasets.

For the comparison methods, we adopt the implementations from DomainBed [22] while we

change their network structures to be the same as ours for the comparison study. We perform

hyperparameter tuning for each comparison method to achieve its best performance on each task.

Specifically, we tune the following hyperparameters: learning rate is selected in {0.0003, .., 0.001},
batch size is set as 128. We set the total training epochs as 500 and early stop patience to 30. We run

the experiments five times and report the average results. F1 score is the main evaluation metric,

and we also analyze the accuracy, precision, recall, and ROC curves in detailed analysis.

4.3 Classification Performance
The test weighted F1 score on three datasets are shown in Table 2, 3, and 4, respectively. From

these results, we can make some observations that: 1) The proposed AFFAR can achieve the

best classification on almost all tasks. Concretely speaking, AFFAR significantly outperforms the

second-best comparison methods by 2.5%, 1.7%, and 3.7% on three datasets, respectively. 2) Other

comparison methods such as AND-mask and RSC can achieve good classification on some tasks

while behaving less satisfied on others, this may be because they neglect the domain-specific

knowledge, which may neglect some latent information between the distributions. 3) ERM is

regarded as the naive baseline and the experimental results are worse than other methods on

several tasks, it is because it only minimizes the empirical risk on the training source data without

reducing the distribution discrepancy and investigating the latent information, the generalization

capability is less satisfied due to the large distribution discrepancy. Thus, it is necessary to explore

and utilize domain generalization approaches in real-life cross-domain HAR application tasks.

4) The performance of DANN is also not comparable to ours. It aims to learn domain-invariant

representations. However, it does not consider the domain-specific information, making it less

effective for generalization tasks. 5) The average performance of MLDG in Table 2 is significantly

worse than ERM, indicating it is not feasible to directly apply meta-learning-based DG algorithms

to activity recognition problems. This may be because the split of meta-train and meta-test datasets

depends heavily on the independence of data, while the activity sensor data are highly dependent,

thus making the results worse. The same conclusions go for data augmentation methods whose

results are also not comparable, thus we did not list them. 6) Finally, the results of the two ideal-case

methods ERM-t and Fine-tune which are trained on the target domain are better than all DG

methods, indicating the importance of target train data. While AFFAR achieves the best results,

there is still room for improvement.

Table 2. Weighted F1 score (%) on DSADS dataset. The bold is the best result except for two ideal conditions.

Target ERM MLDG DANN GroupDRO RSC AND-mask AFFAR (ours) ERM-t Fine-tune

T-1 82.58 64.19 83.94 81.58 81.16 81.86 82.74 98.90 99.12

T-2 80.04 72.32 79.52 80.75 79.86 80.78 84.92 98.90 98.90

T-3 82.87 80.79 83.36 83.24 83.53 83.24 87.60 99.34 100

T-4 82.82 52.81 84.76 82.69 84.03 80.83 86.45 98.22 98.22

Average 82.10 67.53 82.90 82.07 82.15 81.68 85.43 98.84 99.06
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Table 3. Weighted F1 score (%) on USC-HAD. The bold is the best result except for two ideal conditions.

Target ERM DANN GroupDRO RSC AND-mask AFFAR (ours) ERM-t Fine-tune

T-1 72.79 74.68 73.32 73.75 72.35 75.11 90.80 91.22

T-2 76.87 77.64 75.82 77.12 75.17 78.57 89.90 90.99

T-3 72.82 72.00 69.27 73.70 70.86 74.59 87.73 89.74

T-4 59.21 60.05 57.67 59.66 58.88 62.20 82.67 84.72

T-5 65.83 68.18 60.68 70.17 67.38 72.41 87.72 90.33

Average 69.50 70.51 67.35 70.88 68.93 72.58 87.76 89.40

Table 4. Weighted F1 score (%) on PAMAP2. The bold is the best result except for two ideal conditions.

Target ERM DANN GroupDRO RSC AND-mask AFFAR (ours) ERM-t Fine-tune

T-1 56.25 57.92 57.55 57.63 56.74 65.37 94.88 95.58

T-2 84.06 86.11 86.91 86.58 86.54 89.35 93.83 94.95

T-3 85.21 86.21 85.24 84.85 84.93 87.43 94.04 94.70

T-4 82.72 83.32 84.02 84.12 82.28 86.46 93.90 95.21

Average 77.06 78.39 78.43 78.29 77.62 82.15 94.16 95.11
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Fig. 3. Detailed analysis of AFFAR. (a) Ablation study to show the effectiveness of domain-invariant and
domain-specific representation learning modules. (b) Replace the MMD loss with DANN and CORAL loss. (c)
Weights of a randomly selected target test sample for each dataset.

4.4 Ablation Study
4.4.1 Domain-invariant and domain-specific learning modules. AFFAR consists of two important

modules: (1) domain-invariant learning module and (2) domain-specific learning module. In this

section, we conduct an ablation study by evaluating the importance of each module. We compare

four variants of our method: (1) L𝑐𝑙𝑠 , (2) L𝑐𝑙𝑠 + L𝑑𝑖𝑟 , (3) L𝑐𝑙𝑠 + L𝑑𝑠𝑟 , and (4) the full version of

AFFAR. Figure 3(a) reports the average classification accuracy of these variants on all tasks. It can

be observed that by combining domain-invariant and domain-specific learning modules, the whole

AFFAR can achieve the best performance. It evaluates that both the modules are very important

and make contributions to the accurate classification of HAR tasks.

We also show the feature embeddings of each module of our method in Figure 4. (1) Compare

Figure 4(a) and Figure 4(b), we see that adding domain-specific learning to the model will enlarge

the domain margin and the classes are far from each other. This is because domain-specific learning

focuses on separating classes in each domain. However, the domains are not aligned well (in each

class, different domains denoted by shapes are still far). (2) Compare Figure 4(a) with Figure 4(c),

we see that domains (denoted by shapes) are more invariant in each class since domain-invariant
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Fig. 4. Visualization of the t-SNE embeddings of USC-HAD dataset. Each class is denoted by color and each
domain is denoted by a shape. The classes denoted by numbers are walking forward, walking left, walking
right, walking upstairs, walking downstairs, and standing. Best viewed in color and zoom in.

learning focuses on learning general features that can transfer across domains. But the classification

is worse than the whole version (class margins are small, making it easy to misclassify samples). (3)

Finally, we see from Figure 4(d) that adding two modules can not only make the domains more

invariant but also enhance the classification results.

4.4.2 Extending domain-invariant learning with other distances. In Section 3.6, we show that our

AFFAR can also take other distribution matching techniques such as domain-adversarial learning

(DANN, Eq. (7)) and CORAL loss (Eq. (8)). In this section, we replace the original MMD measure

with the DANN and CORAL loss to evaluate the performance of AFFAR.

We thoroughly test the performance in three different datasets and record their average accuracy

in Figure 3(b). It shows that our method is general and flexible that can use other distribution

matching metrics to achieve competitive performance, which is better than the original ERM.

We also observe that AFFAR with MMD loss gives the best performance. On the other hand,

comparing their computational complexity (O𝑀𝑀𝐷 ≈ O𝐶𝑂𝑅𝐴𝐿 < O𝐷𝐴𝑁𝑁 ), we use MMD as our

main distribution matching loss.
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(a) Target-1 (b) Target-2

(c) Target-3 (d) Target-4

Fig. 5. Micro-average ROC curves of AFFAR and other comparison methods for each task on PAMAP2.

4.4.3 Analysis of domain-specific module. In this section, we analyze the domain-specific module

by investigating the learned domain weights to the target domain. The weights can act as the

similarity between the training domains and the test data, representing how much information can

be transferred from these domains. Figure 3(c) shows the (normalized) weights given to a target test

sample for each dataset. Note that only the USC-HAD dataset has four training domains and the

other two have three training domains. The weights reflect the similarity between the target dataset

and each training domain. Thus, it shows that our AFFAR can effectively learn such similarity,

which acts as the contribution of each domain to the target dataset for better generalization.

4.5 Detailed Analysis
To further evaluate the performance of AFFAR on each class, we provide the fine-grained analysis

by the micro-average Receiver Operating Characteristics (ROC) curves in Figure 5. ROC is a more

effective metric for the areas of cost-sensitive learning and unbalanced class issues [14]. We also

calculate the AUC (Area Under Curve) on the four tasks of the PAMAP2 dataset. Figure 5 illustrates

the following conclusions: 1) Our AFFAR can achieve good performance on four tasks. The micro-

average results of four target tasks are all higher than 0.91 which evaluates the classification

effectiveness of AFFAR. 2) Results of all methods on Target-1 are less satisfying, which may be

because the distribution discrepancy of the other domains is smaller so the generalization capability

is reduced. The improvement of AFFAR is more obvious on Target-1 than on the other three target

tasks, which shows that our approach is more robust on hard tasks.

Meanwhile, we randomly select a task of PAMAP2 to further make the fine-grained evaluation

from the perspective of comparison with some state-of-the-art methods by utilizing the metrics of

multi-class precision (P), recall (R), F1 scores (F1) in Table 5 and the visualization of the confusion

matrix for each category in Figure 6. From these experimental results, it can be observed that
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Table 5. Precision, recall, and F1 score of AFFAR and other comparison methods for each class on PAMAP2.
Numbers in each cell denote the percentage of the prediction for each class.

DANN GroupDRO RSC AND-mask AFFAR

Activity P R F1 P R F1 P R F1 P R F1 P R F1

Lying 1.00 0.94 0.97 1.00 0.96 0.98 0.99 0.96 0.97 0.99 0.96 0.97 1.00 0.96 0.98
Sitting 0.83 0.87 0.85 0.83 0.87 0.85 0.82 0.83 0.82 0.89 0.77 0.82 0.92 0.80 0.86
Standing 0.85 0.78 0.81 0.89 0.81 0.85 0.82 0.82 0.82 0.82 0.81 0.81 0.83 0.92 0.87
Walking 0.88 0.95 0.91 0.90 0.94 0.92 0.95 0.93 0.94 0.91 0.94 0.92 0.95 0.96 0.95

Ascending stairs 0.82 0.73 0.77 0.82 0.61 0.70 0.84 0.70 0.77 0.80 0.80 0.80 0.84 0.73 0.78

Descending stairs 0.85 0.69 0.76 0.80 0.73 0.77 0.88 0.76 0.81 0.83 0.71 0.77 0.97 0.76 0.85
Vacuum cleaning 0.73 0.85 0.79 0.74 0.89 0.81 0.69 0.82 0.75 0.70 0.88 0.78 0.72 0.92 0.81

Ironing 0.91 0.93 0.92 0.93 0.97 0.95 0.93 0.97 0.95 0.94 0.96 0.95 0.94 0.97 0.95

Average 0.86 0.84 0.85 0.86 0.85 0.85 0.87 0.85 0.85 0.86 0.85 0.85 0.90 0.88 0.88

(a) ERM (b) DANN (c) GroupDRO

(d) RSC (e) AND-mask (f) Ours

Fig. 6. Confusion matrices of all methods on PAMAP2. Classes 0-7 denote the following activities: lying,
sitting, standing, walking, ascending stairs, descending stairs, vacuum cleaning, and ironing.

AFFAR can get the most number of the best precision-recall-F1 results on all categories than

other comparison methods, and can get the best average precision-recall-F1 across each class.

Besides, from the confusion matrix, we can see that AFFAR can get more balance results on each

category. Most methods get less satisfying results on the fourth and fifth class, AFFAR can reduce

the performance degradation. Although AND-mask can get the best performance on the fourth

class, it gets less satisfying results on other classes than AFFAR except for the first class where all

the comparative methods can achieve a satisfying performance.

4.6 Parameter Sensitivity, Convergence, and Time Analysis
We empirically evaluate the sensitivity of two parameters 𝜆 and 𝛽 by setting their values from

{0.005, 0.01, 0.1, 1, 5, 10} and {0.05, 0.1, 0.5, 1, 5, 10}, respectively . The results are shown in Figure 7(a)
and 7(b). It indicates that our AFFAR stays robust to a wide range of parameter choices.
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Fig. 7. Parameter sensitivity of (a) 𝜆 and (b) 𝛽 . (c) is convergence analysis. (d) is training time analysis.

Table 6. Comparison of inference time and weighted F1-score

Method ERM DANN GroupDRO RSC AND-mask AFFAR (Ours)

Inference time (s) .000010 .000012 .000011 .000011 .000012 .000057

Weighted F1 (%) 82.10 82.90 82.07 82.15 81.68 85.43

We also empirically analyze the convergence of our method and draw the loss curve on a

randomly chosen task of the PAMAP2 dataset in Figure 7(c). Other tasks follow similar observations.

The results show that AFFAR can converge in dozens of epochs, indicating that it is easy to train.

Furthermore, we show the training time of each method on one task in Figure 7(d). We see that

the training time of our method is almost the same as others, while slightly takes more time in

some circumstances. This is reasonable because our method is an ensemble-based learning process

with several domain-specific branches to be learned, which is comparable with other methods. We

obtain similar observations for the inference time.

As inference time is also very crucial to make quick classification while performing accurate

activity recognition. Table 6 shows the comparison of the average inference time of each sample

and weighted F1 score on the DSADS dataset. We can observe that the inference time of different

methods are similar and the proposed method is slightly longer, while the recognition performance

is the best among the comparison methods. This indicates the method can make better activity

recognition in applications with a little more time. And we will make efforts to further reduce the

inference time for better applications in future work.

5 APPLICATION TO ADHD RECOGNITION
Attention Deficit Hyperactivity Disorder (ADHD) is one of the most common mental disorders in

children [26]. ADHD is characterized by inappropriate inattention, hyperactivity, and impulsiv-

ity [2]. It is often accompanied by some motor abnormality, thus it is possible and necessary to

utilize the HAR method to assist the diagnosis. In this section, we apply the proposed AFFAR to

the ADHD application to further evaluate its effectiveness.

We apply our algorithm to a real-world ADHD dataset [26]. This dataset is collected with a

designed wearable diagnostic assessment system in the room environment with little tension.

Ten diagnostic tasks including six interactions with the screen tasks and four physical objects

interaction tasks (Schulte grid, Multi-ball tracking, Catching grasshopper, Drinking birds, Limb

reaction, Reading, Finger holes, Shape-color conflicting, Catching worms, and Keeping balance)

are designed for children for ADHD symptoms according to DSM-5. Six wearable sensors are

attached to children, one on each wrist and each ankle, one on the head, one on the waist during

the ten assessment tasks and accelerometer data are collected. 54-dimensional motion features are

extracted according to [26]. For more detailed information about this dataset, please refer to [26].
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Fig. 8. Multi-class classification in ADHD application.

In our experiment, features from 83 normal

children and 83 children with ADHD are in-

volved. Meanwhile, the children with ADHD

are diagnosed by doctors to confirm they meet

the diagnostic criteria for ADHD. Furthermore,

we have more fine-grained labels, i.e., chil-

dren with ADHD are diagnosed with subtypes,

i.e. predominantly inattentive (50 children),

predominantly hyperactive-impulsive (14 chil-

dren), and combination (19 children). This is a

multi-class classification task.

We divide the data into the source training

set and target test set, with a number of partic-

ipants of 125 and 41, respectively. To harness

the different distributions in the training set,

we further divide it into 3 domains. The classification results of all methods are shown in Figure 8.

We can observe that AFFAR improves the classification accuracy with a rate of around 2.44%. It

indicates the effectiveness of AFFAR in classification with ADHD and the effectiveness of fine-

grained classification on subtypes. Experimental results also show that AFFAR has the potential to

the applied in real-life wearable healthcare.

6 CONCLUSIONS AND FUTUREWORK
Generalization to the unseen test data has always been the key research and application problem

in human activity recognition. While transfer learning and domain adaptation approaches rely on

the availability of test data during the training stage, in this paper, we propose AFFAR to solve

this problem by learning both the domain-invariant and domain-specific features. The key of our

algorithm is to preserve the specific representations of the training data while learning transferable

representations, which could be informative to the generalization on unseen test data. Experiments

on both public datasets and the real application have demonstrated the superiority of our method.

In the future, we plan to extend AFFAR in the following two directions. First, apply it to more

healthcare applications such as the diagnosis of Parkinson’s disease. Second, experiments show

that there is still a gap between our method and fine-tuning, which motivates us to improve the

performance of our method by introducing other domain-invariant learning modules.
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